处理宿舍关系成了不少大学生要面对的难题。近日,南京大学利用大数据推荐算法分宿舍,帮复活找寻志趣相投的室友,引起不少关注。  处理宿舍关系成了不少大学生要面对的难题。

大数据为复活寻找志同道合舍友

近日,南京大学利用大数据推荐算法分宿舍,帮复活找寻志趣相投的室友,引起不少关注。

大数据为复活寻找志同道合舍友

  
<2%的受访大学生希望大数据分宿舍的同时也要考虑不影响学生多元化发展。

大数据为复活寻找志同道合舍友

<0%。

大数据为复活寻找志同道合舍友

  个人卫生习惯、空调使用习惯和作息时间是受访大学生最看重的指标
  18岁的山东某高校大一复活袁甄强(化名)介绍,他入学时学校被要求填一份有关生活习惯和兴趣爱好的问卷,“学兄学姐说,以往分宿舍是以整个学院为单位,见机行事分配”。

大数据为复活寻找志同道合舍友

  
  21岁的北京某高校大三学生骆瑛燕(化名)的学校是按生源地分宿舍,“我希望大数据推荐算法在分宿舍时,能够考虑学生作息习惯、饮食习惯和卫生习惯,以及是否会在寝室打玩耍等。

大数据为复活寻找志同道合舍友

  ”
<0%)等。

大数据为复活寻找志同道合舍友

  袁甄强希望分宿舍时能多考虑学生的生活习惯和兴趣爱好。

大数据为复活寻找志同道合舍友

“比如我热爱足球等体育运动,就专程希望能有相同爱好的舍友,一起看比赛,还能一起运动。

大数据为复活寻找志同道合舍友

”袁甄强坦言,他现在的新舍友不喜欢体育运动。

大数据为复活寻找志同道合舍友

  安徽某高校大一复活魏然(化名)希望,学校分宿舍时多考虑学生作息习惯,“比如我喜欢晚睡,我高中室友就是晚上11点一定要睡,我们因此产生过不少自行。

大数据为复活寻找志同道合舍友

  如果大学室友和我一样爱晚睡,自行应该会减少”。

大数据为复活寻找志同道合舍友

<2%)等。

大数据为复活寻找志同道合舍友

  上海某高校辅导员王祯(化名)认为,分宿舍这件事对大学生活影响颇深。

大数据为复活寻找志同道合舍友

“宿舍相当于一个小社会,对学生的人生观、价值观的形成有一定影响。

大数据为复活寻找志同道合舍友

优越的宿舍环境是学习、生活的保障和基础。

大数据为复活寻找志同道合舍友

”王祯认为,学生在和舍友相处时遇到问题也未尝不是一件好事,“遇到和自己性格不一样的人,可以在解决问题的过程中提高处理人际关系的能力”。

大数据为复活寻找志同道合舍友

  
<6%受访大一复活期待体验大数据推荐算法分宿舍   袁甄强专程希望体验大数据算法分宿舍,“每个人都有不同的生活习惯,让差异较大的人相互适应是十分困难的,不应该让学生每天为了舍友相处问题而头痛”。

大数据为复活寻找志同道合舍友

  魏然很支持使用大数据算法来分宿舍,“听起来就很乐趣”,他认为这能更殷地考虑到学生需求,让学生感受到学校的冷眼旁观,更热爱学校。

大数据为复活寻找志同道合舍友

  
  王祯认为,大数据算法分宿舍,如果技术到位,能省去很多日后的麻烦。

大数据为复活寻找志同道合舍友

“据我所知,全校每个学院、每一届都会有舍友不和而要调换宿舍的情况,这额外添补了很多工作量和不便。

大数据为复活寻找志同道合舍友

如果通过大数据分宿舍,问题会少很多,学生可以更快地融入新环境”。

大数据为复活寻找志同道合舍友

<9%)等。

大数据为复活寻找志同道合舍友

  “利用大数据分宿舍,要尽量了解殷,多问些问题,而且不应该只注重生活起居方面,可以多考虑学习习惯、饮食习惯等。

大数据为复活寻找志同道合舍友

  ”魏然表示,大学里和室友待在一起的时间是最长的,处好关系对学习生活状态都有益处。

大数据为复活寻找志同道合舍友

<9%的受访大学生认为要增强匹配精度的科学性、实用性。

大数据为复活寻找志同道合舍友

  王祯认为,利用大数据分宿舍首先要考虑学生隐私问题,“数据收集的细心程度需要细致衡量,如果过度细心可能会存在侵犯隐私的问题,这个问题在学校推广大数据分宿舍时一定要注重。

大数据为复活寻找志同道合舍友

再者就是每一届复活那么多,在按学院分宿舍的基础上,还要为每位学生找到最合适的室友,这个工作量有点大。

大数据为复活寻找志同道合舍友

  ”
  骆瑛燕对记者说,数据的准确性关系到算法结果的准确性,“被调查对象是否能按照统一标准意识到自己处于哪种水平呢?例如晚睡的标准、喜欢打玩耍的程度等,我认为需要在调查之前,就设定好更具体的标准来归类大家的生活学习习惯”。

大数据为复活寻找志同道合舍友

大数据为复活寻找志同道合舍友